Share Email Print
cover

Proceedings Paper

The development of an integrated Faraday modulator and compensator for continuous polarimetric glucose monitoring
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In recent years, significant advances have been made in the development of noninvasive polarimetric glucose detection systems, salutary for the treatment of our rapidly increasing diabetic population. This area of research utilizes the aqueous humor as the detection medium for its strong correlation to blood glucose concentration and highlights three major features: the optical activity of glucose, minimal scattering of the medium, and the ability to detect sub-millidegree rotation in polarized light. However, many of the current polarimetric systems are faced with size constraints based on the paramount optical components. As a step toward developing a low cost hand-held design, our group has designed a miniaturized integrated single-crystal Faraday modulator/compensator. This device is capable of replacing the traditional two component arrangement that has been widely reported on in many Faraday-based polarimetric configurations. In this study, the newly designed prototype is compared with a theoretical model and its performance is evaluated experimentally under both noninvasive static and dynamic glucose monitoring conditions. The combined rotator can achieve modulation depths above 1°, and when operating in a compensated closed-loop configuration, it has demonstrated glucose prediction errors of 1.8 mg/dL and 5.4 mg/dL under hypoglycemic and hyperglycemic conditions, respectively. These results demonstrate that such an integrated design can perform similar if not better than its larger two-part predecessors. This technology could also be extended to facilitate the use of multispectral polarimetry by considerably reducing the required number of physical components. Such multispectral techniques have demonstrated usefulness for in vivo and multi-analyte noninvasive sensing.

Paper Details

Date Published: 25 February 2013
PDF: 11 pages
Proc. SPIE 8591, Optical Diagnostics and Sensing XIII: Toward Point-of-Care Diagnostics, 859102 (25 February 2013); doi: 10.1117/12.2002628
Show Author Affiliations
Brandon W. Clarke, The Univ. of Toledo (United States)
Brent D. Cameron, The Univ. of Toledo (United States)


Published in SPIE Proceedings Vol. 8591:
Optical Diagnostics and Sensing XIII: Toward Point-of-Care Diagnostics
Gerard L. Coté, Editor(s)

© SPIE. Terms of Use
Back to Top