Share Email Print
cover

Proceedings Paper

Priority-based methods for reducing the impact of packet loss on HEVC encoded video streams
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The rapid growth in the use of video streaming over IP networks has outstripped the rate at which new network infrastructure has been deployed. These bandwidth-hungry applications now comprise a significant part of all Internet traffic and present major challenges for network service providers. The situation is more acute in mobile networks where the available bandwidth is often limited. Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently on track for completion in 2013. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC) for the same quality. However, there has been very little published research on HEVC streaming or the challenges of delivering HEVC streams in resource-constrained network environments. In this paper we consider the problem of adapting an HEVC encoded video stream to meet the bandwidth limitation in a mobile networks environment. Video sequences were encoded using the Test Model under Consideration (TMuC HM6) for HEVC. Network abstraction layers (NAL) units were packetized, on a one NAL unit per RTP packet basis, and transmitted over a realistic hybrid wired/wireless testbed configured with dynamically changing network path conditions and multiple independent network paths from the streamer to the client. Two different schemes for the prioritisation of RTP packets, based on the NAL units they contain, have been implemented and empirically compared using a range of video sequences, encoder configurations, bandwidths and network topologies. In the first prioritisation method the importance of an RTP packet was determined by the type of picture and the temporal switching point information carried in the NAL unit header. Packets containing parameter set NAL units and video coding layer (VCL) NAL units of the instantaneous decoder refresh (IDR) and the clean random access (CRA) pictures were given the highest priority followed by NAL units containing pictures used as reference pictures from which others can be predicted. The second method assigned a priority to each NAL unit based on the rate-distortion cost of the VCL coding units contained in the NAL unit. The sum of the rate-distortion costs of each coding unit contained in a NAL unit was used as the priority weighting. The preliminary results of extensive experiments have shown that all three schemes offered an improvement in PSNR, when comparing original and decoded received streams, over uncontrolled packet loss. Using the first method consistently delivered a significant average improvement of 0.97dB over the uncontrolled scenario while the second method provided a measurable, but less consistent, improvement across the range of testing conditions and encoder configurations.

Paper Details

Date Published: 19 February 2013
PDF: 15 pages
Proc. SPIE 8656, Real-Time Image and Video Processing 2013, 86560E (19 February 2013); doi: 10.1117/12.2002451
Show Author Affiliations
James Nightingale, Univ. of the West of Scotland (United Kingdom)
Qi Wang, Univ. of the West of Scotland (United Kingdom)
Christos Grecos, Univ. of the West of Scotland (United Kingdom)


Published in SPIE Proceedings Vol. 8656:
Real-Time Image and Video Processing 2013
Nasser Kehtarnavaz; Matthias F. Carlsohn, Editor(s)

© SPIE. Terms of Use
Back to Top