Share Email Print
cover

Proceedings Paper

Deviance statistics in model fit and selection in ROC studies
Author(s): Tianhu Lei; K. Ty Bae
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A general non-linear regression model-based Bayesian inference approach is used in our ROC (Receiver Operating Characteristics) study. In the sampling of posterior distribution, two prior models - continuous Gaussian and discrete categorical - are used for the scale parameter. How to judge Goodness-of-Fit (GOF) of each model and how to criticize these two models, Deviance statistics and Deviance information criterion (DIC) are adopted to address these problems. Model fit and model selection focus on the adequacy of models. Judging model adequacy is essentially measuring agreement of model and observations. Deviance statistics and DIC provide overall measures on model fit and selection. In order to investigate model fit at each category of observations, we find that the cumulative, exponential contributions from individual observations to Deviance statistics are good estimates of FPF (false positive fraction) and TPF (true positive fraction) on which the ROC curve is based. This finding further leads to a new measure for model fit, called FPF-TPF distance, which is an Euclidean distance defined on FPF-TPF space. It combines both local and global fitting. Deviance statistics and FPFTPF distance are shown to be consistent and in good agreement. Theoretical derivation and numerical simulations for this new method for model fit and model selection of ROC data analysis are included. Keywords: General non-linear regression model, Bayesian Inference, Markov Chain Monte Carlo (MCMC) method, Goodness-of-Fit (GOF), Model selection, Deviance statistics, Deviance information criterion (DIC), Continuous conjugate prior, Discrete categorical prior. ∗

Paper Details

Date Published: 28 March 2013
PDF: 8 pages
Proc. SPIE 8673, Medical Imaging 2013: Image Perception, Observer Performance, and Technology Assessment, 86731A (28 March 2013); doi: 10.1117/12.2000672
Show Author Affiliations
Tianhu Lei, UPMC Presbyterian (United States)
K. Ty Bae, UPMC Presbyterian (United States)


Published in SPIE Proceedings Vol. 8673:
Medical Imaging 2013: Image Perception, Observer Performance, and Technology Assessment
Craig K. Abbey; Claudia R. Mello-Thoms, Editor(s)

© SPIE. Terms of Use
Back to Top