Share Email Print
cover

Proceedings Paper

Theory-guided nano-engineering of organic electro-optic materials for hybrid silicon photonic, plasmonic, and metamaterial devices
Author(s): Larry R. Dalton
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Coarse-grained Monte Carlo/molecular dynamic calculations are employed to explore the effect of various of intermolecular electrostatic interactions upon chromophore order, lattice dimensionality, and viscoelasticity in electrically-poled organic second order nonlinear optical materials. The following classes of organic macromolecular materials are considered: (1) Chromophore-polymer composites, (2) chromophores covalently incorporated into polymers and dendrimers, (3) chromophores incorporating additional dipolar or quadrupolar interactions that enhance poling efficiency, and (4) binary chromophore materials. For chromophore-polymer composites, the competition of chromophore-chromophore dipolar interactions and nuclear repulsive (steric) interactions define poling-induced acentric order. For covalently incorporated chromophores, covalent bond potentials also influence poling-induced order. These first two classes of materials basically behave as Langevin (3-D) lattice materials. Dipolar (e.g., coumarin) and quadrupolar (arene-perfluoroarene) interactions act to influence lattice dimensionality and thus enhance poling efficiency (the ratio of electro-optic activity to electric poling field strength). The long-range molecular cooperativity associated with these interactions influences viscoelastic properties critical to material processing and integration into silicon photonic, plasmonic, and metamaterial devices. The interaction between different chromophore species in binary chromophore materials also enhances poling efficiency. Polarized laser radiation applied to certain binary chromophore materials can also be used to enhance poling efficiency through control of lattice dimensionality. Poling efficiency approaching 5 (nm/V)2 has been achieved for these latter two classes of materials. Improvement in poling efficiency and control of material viscosity is particular important for integration of organic materials into complex device structures.

Paper Details

Date Published: 6 March 2013
PDF: 12 pages
Proc. SPIE 8622, Organic Photonic Materials and Devices XV, 86220J (6 March 2013); doi: 10.1117/12.2000246
Show Author Affiliations
Larry R. Dalton, Univ. of Washington (United States)


Published in SPIE Proceedings Vol. 8622:
Organic Photonic Materials and Devices XV
Christopher E. Tabor; François Kajzar; Toshikuni Kaino; Yasuhiro Koike, Editor(s)

© SPIE. Terms of Use
Back to Top