Share Email Print

Proceedings Paper

Initial developments in the Stanford SQUIRT program
Author(s): Christopher A. Kitts; Robert J. Twiggs
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Stanford University's Department of Aeronautics and Astronautics has commenced full scale development of a new microsatellite initiative. Known as the satellite quick research testbed (SQUIRT) program, the project's goal is to produce student engineered satellites capable of servicing state-of-the-art research payloads on a yearly basis. This program is specifically designed to meet the education and research goals of the department's Satellite Systems Development Laboratory. SQUIRT vehicles are envisioned to consist of a 25 pound, 9 inch tall, 16 inch diameter hexagonal structure with complete processor, communications, power, thermal, and attitude subsystems. These spacecraft cater to low power, volume, and mass research experiments and student developed educational packages. Mission lifetimes of up to one year are considered. Through student participation, voluntary mentoring from the academic and industrial communities, and the extensive use of off-the-shelf components, the cash outlay target for SQUIRT class vehicles is $50,000. This paper discusses the educational and research issues surrounding the development of Stanford's spacecraft design curriculum and the formulation of the SQUIRT program. A technical review of the first SQUIRT satellite, named SAPPHIRE, and an outline of the conceptual plans for other missions is also presented. Additionally, initiatives concerning partner academic institutions and public domain design information are featured.

Paper Details

Date Published: 9 January 1995
PDF: 8 pages
Proc. SPIE 2317, Platforms and Systems, (9 January 1995); doi: 10.1117/12.198945
Show Author Affiliations
Christopher A. Kitts, Stanford Univ. (United States)
Robert J. Twiggs, Stanford Univ. (United States)

Published in SPIE Proceedings Vol. 2317:
Platforms and Systems
William L. Barnes; Brian J. Horais, Editor(s)

© SPIE. Terms of Use
Back to Top