Share Email Print

Proceedings Paper

Symmetric algorithms for curves and surfaces
Author(s): Hans-Peter Seidel
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Using the concept of synmietric algorithms, we construct a new patch representation for bivariate polynomials: the B-patch. B-patches share many properties with B-spline segments: They are characterized by their control points and by a 3-parameter family of knots. If the knots in each family coincide, we obtain the Bezier representation of a hivariate polynomial over a triangle. Therefore B-patches are a generalization of Bezier patches. B-patches have a de Boor-like evaluation algorithm, and, as in the case of B-spline curves, the control points of a B-patch can be expressed by simpy inserting a sequence of knots into the corresponding polar form. B-patches can be joined smoothly and they have an algorithm for knot insertion that is completely similar to Boehm's algorithm for curves.

Paper Details

Date Published: 1 August 1990
PDF: 12 pages
Proc. SPIE 1251, Curves and Surfaces in Computer Vision and Graphics, (1 August 1990); doi: 10.1117/12.19727
Show Author Affiliations
Hans-Peter Seidel, Univ. of Waterloo (Germany)

Published in SPIE Proceedings Vol. 1251:
Curves and Surfaces in Computer Vision and Graphics
Leonard A. Ferrari; Rui J. P. de Figueiredo, Editor(s)

© SPIE. Terms of Use
Back to Top