Share Email Print
cover

Proceedings Paper

Feature selection for remote-sensing data classification
Author(s): Sebastiano Bruno Serpico; Paolo Pellegretti; Lorenzo Bruzzone
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A great amount of parameters can be derived from the original bands of multispectral remotely-sensed irnages. In particular, for classification purposes it is important to select which of these parameters allow the classes of interest to be well separated in the feature space. In fact, both classification accuracy and computational efficiency rely on the set of features used. Unfoltunately, as spectral responses are strongly influenced by various environmental factors (e.g., atmosphere interferences and non- homogeneous sunshine distribution) the derived parameters depend not only on the considered classes but also on the peculiar characteristics of analyzed images. Even if many studies have been carried out both to identify more stable parameters and to correct images, the problem is still open. It cannot be a-priori solved on the basis of the only ground classes considered, but an ad-hoc selection is required for each image to be classified. In literature, several feature-selection criteria have been proposed. In this paper, a critical review of different techniques to accomplish feature-selection for remote-sensing classification problems is presented. To preserve the physical meaning of selected features only criteria that do not make transformation of the feature space are considered. Most of such criteria were originally defined to evaluate the separability among couple of classes. A formal extension of these techniques based on the statistical theory to face also multiclass cases is considered and compared with traditional heuristic extensions. Finally, with the aim to give a good approximation of the Bayes error probability a new feature-selection criteria is proposed. Preliminary tests carried out on a multispectral data-set witness its potentialities.

Paper Details

Date Published: 30 December 1994
PDF: 9 pages
Proc. SPIE 2315, Image and Signal Processing for Remote Sensing, (30 December 1994); doi: 10.1117/12.196757
Show Author Affiliations
Sebastiano Bruno Serpico, Univ. of Genoa (Italy)
Paolo Pellegretti, Univ. of Genoa (Italy)
Lorenzo Bruzzone, Univ. of Genoa (Italy)


Published in SPIE Proceedings Vol. 2315:
Image and Signal Processing for Remote Sensing
Jacky Desachy, Editor(s)

© SPIE. Terms of Use
Back to Top