Share Email Print

Proceedings Paper

Performance of x-ray imaging systems with optical coupling for demagnification between scintillator and CCD readout
Author(s): Hans Roehrig; Tong Yu; William V. Schempp
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper discusses the performance of x-ray imaging devices employing optical coupling between the x-ray detector (phosphor screen) and the readout (CCD). Optical coupling can be performed with the aid of a lens or with the aid of a fiber-optic taper. Conventional wisdom predicts that fiber-optic coupling is superior on account of superior light collection efficiency. For the same demagnification, fiber-optic tapers usually have a higher numerical aperture in the object plane than a lens. This paper presents a review of critical imaging system components and provides a comparison of factors such as light collection efficiency, phosphor screen light output and CCD sensitivity. The paper presents data obtained with two commercially available x-ray imaging systems, one a lens coupled system, the other a fiber- optically coupled system. These systems are used for mammographically guided stereotactic breast biopsy to determine the x-, y-, and z-coordinates of the lesion to be biopsied. The paper concludes that a lens coupled x-ray imaging system can be superior to a fiber-optic one, particularly with respect to Detective Quantum Efficiency. This superiority is based on a quantum gain of about 5 CCD electrons per absorbed x-ray photon, which is (however barely) sufficient to preserve most of the information collected by the system's Lanex screen.

Paper Details

Date Published: 11 November 1994
PDF: 14 pages
Proc. SPIE 2279, Advances in Multilayer and Grazing Incidence X-Ray/EUV/FUV Optics, (11 November 1994); doi: 10.1117/12.193177
Show Author Affiliations
Hans Roehrig, Univ. of Arizona (United States)
Tong Yu, Univ. of Arizona (United States)
William V. Schempp, Photometrics Inc. (United States)

Published in SPIE Proceedings Vol. 2279:
Advances in Multilayer and Grazing Incidence X-Ray/EUV/FUV Optics
Richard B. Hoover; Arthur B. C. Walker, Editor(s)

© SPIE. Terms of Use
Back to Top