Share Email Print

Proceedings Paper

Error detection in digital neural networks: an algorithm-based approach for inner product protection
Author(s): Luca Breveglieri; Vincenzo Piuri
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Artificial Neural Networks are an interesting solution for several real-time applications in the area of signal and image processing, in particular since recent advances in VLSI integration technologies allow for efficient hardware realizations. The use of dedicated circuits implementing the neural networks in mission-critical applications requires a high level of protection with respect to errors due to faults to guarantee output credibility and system availability. In this paper, the problem of concurrent error detection in dedicated neural networks is discussed by adopting an algorithm-based approach to check the inner product, i.e., the most of the computation performed in the neural network. Effectiveness and efficiency of this technique is shown and evaluated for the widely-used classes of neural paradigms.

Paper Details

Date Published: 28 October 1994
PDF: 12 pages
Proc. SPIE 2296, Advanced Signal Processing: Algorithms, Architectures, and Implementations V, (28 October 1994); doi: 10.1117/12.190890
Show Author Affiliations
Luca Breveglieri, Politecnico di Milano (Italy)
Vincenzo Piuri, Politecnico di Milano (Italy)

Published in SPIE Proceedings Vol. 2296:
Advanced Signal Processing: Algorithms, Architectures, and Implementations V
Franklin T. Luk, Editor(s)

© SPIE. Terms of Use
Back to Top