Share Email Print

Proceedings Paper

Three-dimensional dynamic deformation monitoring using a laser-scanning system
Author(s): Nedal N. Al-Hanbali; William F. Teskey
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Non-contact dynamic deformation monitoring (e.g. with a laser scanning system) is very useful in monitoring changes in alignment and changes in size and shape of coupled operating machines. If relative movements between coupled operating machines are large, excessive wear in the machines or unplanned shutdowns due to machinery failure will occur. The purpose of non-contact dynamic deformation monitoring is to identify the causes of large movements and point to remedial action that can be taken to prevent them. The laser scanning system is a laser-based 3D vision system. The system-technique is based on an auto- synchronized triangulation scanning scheme. The system provides accurate, fast, and reliable 3D measurements and can measure objects between 0.5 m to 100 m with a field of view of 40 degree(s) X 50 degree(s). The system is flexible in terms of providing control over the scanned area and depth. The system also provides the user with the intensity image in addition to the depth coded image. This paper reports on the preliminary testing of this system to monitor surface movements and target (point) movements. The monitoring resolution achieved for an operating motorized alignment test rig in the lab was 1 mm for surface movements and 0.50 m for target movements. Raw data manipulation, local calibration, and the method of relating measurements to control points will be discussed. Possibilities for improving the resolution and recommendations for future development will also be presented.

Paper Details

Date Published: 6 October 1994
PDF: 10 pages
Proc. SPIE 2350, Videometrics III, (6 October 1994); doi: 10.1117/12.189156
Show Author Affiliations
Nedal N. Al-Hanbali, Univ. of Calgary (Canada)
William F. Teskey, Univ. of Calgary (Canada)

Published in SPIE Proceedings Vol. 2350:
Videometrics III
Sabry F. El-Hakim, Editor(s)

© SPIE. Terms of Use
Back to Top