Share Email Print
cover

Proceedings Paper

Power and length requirements for all-optical switching in semiconductor-doped glass waveguides
Author(s): Derek T. Mayweather; Michel J. F. Digonnet; Richard H. Pantell; H. John Shaw
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present a theoretical model that computes the nonlinear index (n2) of semiconductor- doped glasses (SDG), based on the material's properties, and predicts the power and length requirements, as well as the optimum operating wavelengths, for an all-optical SDG waveguide switch. The main conclusions are that (1) n2 depends strongly on pump intensity, which partly explains the large disparity in reported values of n2, (2) the pump and signal wavelengths should be in specific and different ranges to minimize switching power and signal loss, (3) for CdSSe- and CdTe-doped glasses, n2 is relatively small, and the switching power requirement for these two SDGs is consequently quite high (2 - 16 W). We provide evidence that this weak nonlinearity, compared to that of similar semiconductors in bulk, is due to the strong nonradiative recombination of carriers arising from the small size of the semiconductor microcrystallites. Projections indicate that the switching power would be reduced by up to three orders of magnitude by increasing the microcrystallite size, thus producing a slower (ns) but more power-efficient switch.

Paper Details

Date Published: 3 October 1994
PDF: 9 pages
Proc. SPIE 2289, Doped Fiber Devices and Systems, (3 October 1994); doi: 10.1117/12.188703
Show Author Affiliations
Derek T. Mayweather, Stanford Univ. (United States)
Michel J. F. Digonnet, Stanford Univ. (United States)
Richard H. Pantell, Stanford Univ. (United States)
H. John Shaw, Stanford Univ. (United States)


Published in SPIE Proceedings Vol. 2289:
Doped Fiber Devices and Systems
Michel J. F. Digonnet, Editor(s)

© SPIE. Terms of Use
Back to Top