Share Email Print
cover

Proceedings Paper

Fractal-based modeling and interpolation of non-Gaussian images
Author(s): Stephen M. Kogon; Dimitris G. Manolakis
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In modeling terrain images corresponding to infrared scenes it has been found the images are characterized by a long-range dependence structure and high variability. The long-range dependence manifests itself in a `1/f' type behavior in the power spectral density and statistical self-similarity, both of which suggest the use of a stochastic fractal model. The traditional stochastic fractal model is fractional Brownian motion, which assumes the increment process arises from a Gaussian distribution. This model has been found to be rather limiting due to this restriction and therefore is incapable of modeling processes possessing high variability and emanating from long-tailed non-Gaussian distributions. Stable distributions have been shown to be good models of such behavior and have been incorporated into the stochastic fractal model, resulting in the fractional Levy stable motion model. The model is demonstrated on a terrain image and is used in an interpolation scheme to improve the resolution of the image.

Paper Details

Date Published: 16 September 1994
PDF: 11 pages
Proc. SPIE 2308, Visual Communications and Image Processing '94, (16 September 1994); doi: 10.1117/12.185989
Show Author Affiliations
Stephen M. Kogon, Georgia Institute of Technology (United States)
Dimitris G. Manolakis, Boston College (United States)


Published in SPIE Proceedings Vol. 2308:
Visual Communications and Image Processing '94
Aggelos K. Katsaggelos, Editor(s)

© SPIE. Terms of Use
Back to Top