Share Email Print

Proceedings Paper

Drude analysis of transition metal nitride films for solar control and low-E multilayers
Author(s): Monica Veszelei; Carl-Gustaf Ribbing; Arne Roos
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The Drude-like behavior of the group IVB metal nitrides: TiN, ZrN and HfN furnishes the physical basis for the use of these hard, inert materials as replacement for noble metals in optically selective multilayers. A low value of the refractive index, n, in the visible region and rapidly increasing extinction coefficient, k, when the wavelength increases into the infrared, is characteristic for these nitrides, although to a lesser extent than for the noble metals. A screened Drude model can be fitted to the experimental dielectric function over the near infrared and at least part of the visible spectrum to determine the parameters: plasma resonance energy hvp and relaxation time (tau) . Systematic studies of TiN and ZrN films show that n increases with decreasing film thickness below 60 nm when the film transmits. This increase can be modelled with a increasing Drude parameter (tau) and has previously been explained as an extrinsic effect from defects etc. It is argued that most of this change can be understood as an effect of diffuse scattering against the back surface of the film and is therefore not cured by improvements in deposition technology.

Paper Details

Date Published: 9 September 1994
PDF: 12 pages
Proc. SPIE 2255, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, (9 September 1994); doi: 10.1117/12.185366
Show Author Affiliations
Monica Veszelei, Uppsala Univ. (Sweden)
Carl-Gustaf Ribbing, Uppsala Univ. (Sweden)
Arne Roos, Uppsala Univ. (Sweden)

Published in SPIE Proceedings Vol. 2255:
Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII
Volker Wittwer; Claes G. Granqvist; Carl M. Lampert, Editor(s)

© SPIE. Terms of Use
Back to Top