Share Email Print
cover

Proceedings Paper

Laser-tissue interactions (bone and cartilage) at the 2.9-um erbium:YAG wavelength
Author(s): Kirk E. Maes; Henry H. Sherk
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A new flexible handheld delivery system for the Erbium:YAG laser has recently been developed. We studied the ability of this system to deliver energy levels sufficient to cut human cadaveric femoral condylar bone and meniscal tissue, and evaluated the histologic effects and quality of those cuts. Furrowing cuts were made with the 2.9-micrometers Erbium:YAG laser in human cadaveric femoral condylar bone and meniscal tissue. Multiple cuts were delivered through a flexible handpiece with a focusing tip using five different energy settings ranging from 200 mj to 1000 mj at 10 Hz. The tissue samples were fixed and stained with HE and Trichrome. Microscopic analysis was completed and data is reported as direct measurements of histologic damage based on differential staining characteristics. This study shows that sufficient energy to cut cartilage and bone can be delivered through a flexible handheld device. The cut surfaces showed outstanding quality and minimal tissue damage, especially when compared to the Ho:YAG, Nd:YAG, and the CO2 lasers, none of which adequately cut bone at the present time.

Paper Details

Date Published: 7 September 1994
PDF: 6 pages
Proc. SPIE 2128, Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, (7 September 1994); doi: 10.1117/12.184886
Show Author Affiliations
Kirk E. Maes, Medical College of Pennsylvania (United States)
Henry H. Sherk, Medical College of Pennsylvania (United States)


Published in SPIE Proceedings Vol. 2128:
Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV
R. Rox Anderson; R. Rox Anderson, Editor(s)

© SPIE. Terms of Use
Back to Top