Share Email Print
cover

Proceedings Paper

Perturbative approach to the small-scale physics of thermal blooming
Author(s): S. Enguehard; Brian Hatfield
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The linearized equations of thermal blooming for an infinite beam in a uniform atmosphere and wind are analytically solved as a perturbation series in blooming for the case of compensated and uncompensated propagation. A Feynman diagram representation of the series is presented. The propagators are used to compute the mutual coherence function (MCF) and Strehl also as a perturbation series in blooming. The dependence of the results on the actuator Fresnel number is discussed along with the relative roles of the phase compensation instability and stimulated thermal Rayleigh scattering. A brief comparison is made with nonlinear numerical simulations to show that the nonlinearities may be neglected.

Paper Details

Date Published: 1 May 1990
PDF: 14 pages
Proc. SPIE 1221, Propagation of High-Energy Laser Beams Through the Earth's Atmosphere, (1 May 1990); doi: 10.1117/12.18362
Show Author Affiliations
S. Enguehard, Applied Mathematical Physics Research, Inc. (United States)
Brian Hatfield, Applied Mathematical Physics Research, Inc. (United States)


Published in SPIE Proceedings Vol. 1221:
Propagation of High-Energy Laser Beams Through the Earth's Atmosphere
Peter B. Ulrich; LeRoy E. Wilson, Editor(s)

© SPIE. Terms of Use
Back to Top