Share Email Print

Proceedings Paper

Laser beam propagation in the atmosphere at 1.3 um
Author(s): Susan L. Bragg; J. Daniel Kelley
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

High-resolution Fourier-transform spectrometry is presently used, in conjunction with a specially designed multipath absorption cell, to obtain molecular absorption spectra in the 1.30-1.32 micron range for water vapor and isotopically substituted water vapor. A range of water vapor number densities, including the foreign gas-pressure broadening of water vapor by air, were studied in order to extract line-shape parameters required for atmospheric laser-propagation modeling. Molecular line shape parameters are summarized for the 1.3-micron region, and estimates are presented for ground-to-space laser propagation at several representative wavelengths. The majority of line strengths are smaller than the corresponding values in the USAF Geophysics Laboratory HITRAN molecular-parameter data base.

Paper Details

Date Published: 1 May 1990
PDF: 7 pages
Proc. SPIE 1221, Propagation of High-Energy Laser Beams Through the Earth's Atmosphere, (1 May 1990); doi: 10.1117/12.18353
Show Author Affiliations
Susan L. Bragg, McDonnell Douglas Research Labs. (United States)
J. Daniel Kelley, McDonnell Douglas Research Labs. (United States)

Published in SPIE Proceedings Vol. 1221:
Propagation of High-Energy Laser Beams Through the Earth's Atmosphere
Peter B. Ulrich; LeRoy E. Wilson, Editor(s)

© SPIE. Terms of Use
Back to Top