Share Email Print
cover

Proceedings Paper

Physics of laser-induced stress wave propagation, cracking, and cavitation in biological tissue
Author(s): Lev T. Perelman; Douglas Albagli; Marta Dark; Jonathan Schaffer; Charles von Rosenberg; Irving Itzkan; Michael S. Feld
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In the regime where the specific time for propagation of stress waves is longer than the laser pulse duration, but shorter than the heat dissipation time, stress can be one of the governing mechanisms of laser-induced ablation of biological tissue. In such inertially confined regimes, knowing the mechanical properties of biological tissue an the kinetics of cracking (in hard tissue represented by bone) and cavitation (in soft tissue represented by meniscus) are important to understand the ablation process. An experimental technique has been developed to study laser-induced stress generation and mechanical properties of tissue in such regimes. This technique is based on monitoring the tissue surface after laser irradiation, using an interferometer that can measure submicron surface displacements on a nanosecond time scale. The subablation threshold laser-induced surface displacements can be related to the stress within the tissue and mechanical properties of the tissue. The surface movement of aqueous solution and meniscus tissue irradiated by 7.5-ns pulses of 355 nm light was consistent with growth and collapse of cavitation bubble. Bone movement was qualitatively consistent with theoretical predictions obtained by solving the equation of motion both analytically and numerically. In the regime where laser beam radius and optical absorption depth are comparable, it is shown that a full 3D analysis is necessary to understand the observed results.

Paper Details

Date Published: 17 August 1994
PDF: 12 pages
Proc. SPIE 2134, Laser-Tissue Interaction V; and Ultraviolet Radiation Hazards, (17 August 1994); doi: 10.1117/12.182930
Show Author Affiliations
Lev T. Perelman, Massachusetts Institute of Technology (United States)
Douglas Albagli, Massachusetts Institute of Technology (United States)
Marta Dark, Massachusetts Institute of Technology (United States)
Jonathan Schaffer, Massachusetts Institute of Technology (United States)
Charles von Rosenberg, Massachusetts Institute of Technology (United States)
Irving Itzkan, Massachusetts Institute of Technology (United States)
Michael S. Feld, Massachusetts Institute of Technology (United States)


Published in SPIE Proceedings Vol. 2134:
Laser-Tissue Interaction V; and Ultraviolet Radiation Hazards
Steven L. Jacques; David H. Sliney; Michael Belkin, Editor(s)

© SPIE. Terms of Use
Back to Top