Share Email Print
cover

Proceedings Paper

Detection of an intermediate late in the unfolding pathway of bacillus stearothermophilus lactate dehydrogenase
Author(s): Roger N. Sleigh; David J. Halsall; Anthony R. Clarke; Moira Behan-Martin; J. John Holbrook
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In vivo proteins fold to form one active structure in minutes or seconds, ruling out the possibility that a polypeptide samples all possible conformational space during folding. We have used site directed mutagenesis to produce 15 single tryptophan containing mutants of Bacillus stearothermophilus lactate dehydrogenase (BS LDH) thus enabling the equilibria of unfolding to be seen from 15 defined positions. These mutant versions of BS LDH have the same X-ray structure as the wild type protein8. Previously Smith et al.11 had detected and assigned structures to 4 folding states. The first intermediate, a monomer with secondary and super secondary structure largely intact, is formed after the dimer dissociates at 0.55 M guanidinium hydrochloride (GuHCl). The second intermediate on the unfolding pathway is stable at 2.2 M GuHCl. It had been assumed previously that the transition from this molten-globule structure to the fully denatured form occurred as a single process. We have now identified a core folding motif. In this, helix (alpha) -1F forms a helix-sheet interaction with (beta) -K and (beta) -K has interactions with both (alpha) -2G and (alpha) -3G. This super secondary interaction forms the most stable folding motif in BS LDH and is lost at 2.8 M GuHCl leaving helix (alpha) -1F, (alpha) -2G, and (alpha) -3G which are stable until 3 M GuHCl.

Paper Details

Date Published: 17 August 1994
PDF: 7 pages
Proc. SPIE 2137, Time-Resolved Laser Spectroscopy in Biochemistry IV, (17 August 1994); doi: 10.1117/12.182740
Show Author Affiliations
Roger N. Sleigh, Univ. of Bristol School of Medical Sciences (United Kingdom)
David J. Halsall, Univ. of Bristol School of Medical Sciences (United Kingdom)
Anthony R. Clarke, Univ. of Bristol School of Medical Sciences (United Kingdom)
Moira Behan-Martin, SERC Daresbury Lab. (United Kingdom)
J. John Holbrook, Univ. of Bristol School of Medical Sciences (United Kingdom)


Published in SPIE Proceedings Vol. 2137:
Time-Resolved Laser Spectroscopy in Biochemistry IV
Joseph R. Lakowicz, Editor(s)

© SPIE. Terms of Use
Back to Top