Share Email Print
cover

Proceedings Paper

1La transitions of jet-cooled indoles and complexes from two-photon fluorescence excitation
Author(s): Pedro L. Muino; Patrik R. Callis
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have observed the polarization resolved two-photon fluorescence excitation spectra of jet cooled (2 to 8 K) indole. 1La lines are distinguished from 1Lb lines by their reduced intensity under excitation with circularly polarized light and by their sharp Q branch using linear polarization. Extensive one-photon excitation spectra of complexes of indole with methanol, H2O, and D2O have been obtained. The pair of '1La' lines at 455 and 480 cm-1 shift only a few wavenumbers more than the 1Lb lines in the type I complexes (where indole is thought to be a H-bond donor) but undergo large intensity redistribution, casting doubt on their assignment as the 1La 'origin'. In the methanol complex I, the 480 cm-1 line does retain its 1La character (as the origin at -160 cm-1 from the bare origin also retains all of its 1Lb character). Previous work on the D2O complex revealed that the Franck-Condon active intermolecular vibrations involve translation of the water center-of-mass by 0.4 angstroms in the case of the type II ('(pi) ') complex at -450 cm-1. Except for a few transitions in the complex indole + methanol, type II peaks are not seen at higher energies in the spectra of the complexes due to their low intensity.

Paper Details

Date Published: 17 August 1994
PDF: 10 pages
Proc. SPIE 2137, Time-Resolved Laser Spectroscopy in Biochemistry IV, (17 August 1994); doi: 10.1117/12.182736
Show Author Affiliations
Pedro L. Muino, Montana State Univ. (United States)
Patrik R. Callis, Montana State Univ. (United States)


Published in SPIE Proceedings Vol. 2137:
Time-Resolved Laser Spectroscopy in Biochemistry IV
Joseph R. Lakowicz, Editor(s)

© SPIE. Terms of Use
Back to Top