Share Email Print
cover

Proceedings Paper

Feature assessment in imperfectly supervised environments
Author(s): Belur V. Dasarathy
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This study extends the previously reported feature assessment scheme CORPS (class overlap region partitioning scheme) designed for perfectly supervised environments to the imperfectly supervised domain. The imperfectness levels of the labels, which can be different for different classes, are used to appropriately weight the feature space overlap evaluation process, i.e., the samples from classes with more reliable labels are given correspondingly more weightage than those with less reliable labels. The methodology can be applied to mixed supervised and imperfectly supervised environments also, with subsets of data even within a class having different imperfectness levels. Like CORPS, the extended method can be used either as a stand alone tool or as a front end to more complex combinatorial feature selection procedures such as branch and bound and genetic algorithms. The new approach also has the flexibility to permit a bias in favor of either of the two possible types of errors in a binary decision process, such as false alarm and leakage in a target detection problem. Algorithmic and operational details are included to facilitate wide usage of this new tool.

Paper Details

Date Published: 29 July 1994
PDF: 12 pages
Proc. SPIE 2234, Automatic Object Recognition IV, (29 July 1994); doi: 10.1117/12.181033
Show Author Affiliations
Belur V. Dasarathy, Dynetics, Inc. (United States)


Published in SPIE Proceedings Vol. 2234:
Automatic Object Recognition IV
Firooz A. Sadjadi, Editor(s)

© SPIE. Terms of Use
Back to Top