Share Email Print

Proceedings Paper

Fully polarimetric generalized likelihood ratio tests (GLRTs) for detecting scattering centers with unknown amplitude, phase, and tilt angle in terrain clutter
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present a family of polarimetric generalized likelihood ratio tests (PGLRTs) which exploit fully polarimetric information in a high resolution application to detect scattering centers in terrain clutter. The detectors are based on a deterministic target model derived from the Huynen parameterization of a scattering matrix. The model is parameterized by target amplitude, absolute phase, and target orientation angle. These parameters, which are unknown in many practical applications, are estimated by the detectors. the PGLRTs may be used to enhance the responses of certain scattering center types relative to others in a given region of interest. Once a scattering center is detected, the ML estimates formed by a PGLRT may be used to further describe the detected target. We implement and analyze the performance of the PGLRTs designed for Gaussian and K-distributed clutter with known covariance. The PGLRT that assumes all three model parameters are unknown is a detector whose performance we show to lie between that of the optimal polarimetric detector and the polarization whitening filter.

Paper Details

Date Published: 29 July 1994
PDF: 12 pages
Proc. SPIE 2234, Automatic Object Recognition IV, (29 July 1994); doi: 10.1117/12.181032
Show Author Affiliations
Ronald L. Dilsavor, Sverdrup Technology, Inc. (United States)
Randolph L. Moses, The Ohio State Univ. (United States)

Published in SPIE Proceedings Vol. 2234:
Automatic Object Recognition IV
Firooz A. Sadjadi, Editor(s)

© SPIE. Terms of Use
Back to Top