Share Email Print

Proceedings Paper

Simple noninvasive laser diode oxymeter for measurements on human tissues
Author(s): Paolo Lago; Luigi Rovati; Roberto Colombo; Ugo Corra; Francesco De Vito; Mario Corti
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A compact, light, easy to use, and low cost instrument with technical solutions that make it suitable for wide clinical use is presented. It is specifically designed for rehabilitation of patients after heart failure. The instrument makes use of low power laser diodes, at 750 and 810 nm, and a remote fiber optic probe. Reflectance change at two wavelengths is used to determine variations of the oxygen content of tissues. A time-variant filter enhances signal to noise ratio and rejects stray light. This specific electronic device allows the use of a low-cost, small and reliable photodiode in place of a photomultiplier tube. Time division techniques is used to process both 750 and 810 signals with a single collecting fiber, photodiode, and preamplifier. The instrument output is two analog signals proportional to the reflectance intensities at 750 and 810 nm, so it is possible to acquire these signals by a PC with a standard A/D board to drive directly a chart recorder. Some clinical tests during the exercise are presented.

Paper Details

Date Published: 28 July 1994
PDF: 7 pages
Proc. SPIE 2131, Biomedical Fiber Optic Instrumentation, (28 July 1994); doi: 10.1117/12.180771
Show Author Affiliations
Paolo Lago, Univ. di Pavia (Italy)
Luigi Rovati, Univ. di Pavia (Italy)
Roberto Colombo, Veruno Medical Ctr. (Italy)
Ugo Corra, Veruno Medical Ctr. (Italy)
Francesco De Vito, Veruno Medical Ctr. (Italy)
Mario Corti, Univ. di Pavia (Italy)

Published in SPIE Proceedings Vol. 2131:
Biomedical Fiber Optic Instrumentation
James A. Harrington; David M. Harris; Abraham Katzir; Fred P. Milanovich, Editor(s)

© SPIE. Terms of Use
Back to Top