Share Email Print
cover

Proceedings Paper

Recent progress in single-sided gamma-ray tomography
Author(s): Robert S. Thoe
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The use of scattered radiation for radiography has many potential advantages over conventional projection techniques: for high energy photons the scattering process strongly dominates all other processes. The intensity of scattered radiation is due directly to the electron density and highly insensitive to chemical composition. Finally, the use of scattered radiation allows the investigator to position the radiation source on the same side of the object as the detector. In this paper I will present some recent results of a set of measurements made with our uncollimated Compton backscattering tomography apparatus. This technique uses the Compton energy shift of scattered gamma rays to determine the scattering site. By measuring the spectrum of these scattered gamma rays it is then possible to determine the electron density of the object being investigated. I will give a brief description of the apparatus and present the results of numerous measurements made on a brass phantom with voids placed at various depths. These results imply that for this crude apparatus occlusions as small as one cubic millimeter may be located to an accuracy of about one millimeter at depths of about 15 millimeters in solid brass.

Paper Details

Date Published: 22 July 1994
PDF: 17 pages
Proc. SPIE 2217, Aerial Surveillance Sensing Including Obscured and Underground Object Detection, (22 July 1994); doi: 10.1117/12.179958
Show Author Affiliations
Robert S. Thoe, Lawrence Livermore National Lab. (United States)


Published in SPIE Proceedings Vol. 2217:
Aerial Surveillance Sensing Including Obscured and Underground Object Detection
Ivan Cindrich; Nancy DelGrande; Sankaran Gowrinathan; Peter B. Johnson; James F. Shanley, Editor(s)

© SPIE. Terms of Use
Back to Top