Share Email Print

Proceedings Paper

Ultrafast molecular beam epitaxy (MBE) CdTe photoconductor array for synchrotron radiation
Author(s): Sung-Shik Yoo; Brian G. Rodricks; Sivalingam Sivananthan; Jean-Pierre Faurie; Pedro A. Montano
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

MBE (molecular beam epitaxy) grown CdTe layers were processed to fabricate a photoconductor array for the diagnosis of short x-ray pulses from synchrotron radiation sources. The MBE (111)B CdTe layers were grown on (100)Si substrates. Photoconductor arrays were fabricated with gaps of 5 - 50 micrometers using conventional photolithography. Electroless Au or sputtered Au/Ni was used as a contact metal. The temporal response of the resulting CdTe photoconductor was measured with mode-locked 100 fsec Ti:Sapphire laser pulses. The FWHM of single crystalline CdTe photoconductor response pulse is as short as 37 psec with a 20 psec risetime. The photoconductor responds linearly to the x-ray tube photon flux with fixed accelerating voltage up to 40 kV. A significant response increase to the x-ray beam is observed for a layer with good crystalline quality. Spatial response of the CdTe photoconductor array was measured using rotating anode and synchrotron x rays for different beam sizes. Excellent spatial resolution was obtained from narrow angular radiation synchrotron x rays. The CdTe photoconductor was exposed to synchrotron x rays for 60 hours without any noticeable degradation.

Paper Details

Date Published: 13 July 1994
PDF: 9 pages
Proc. SPIE 2228, Producibility of II-VI Materials and Devices, (13 July 1994); doi: 10.1117/12.179661
Show Author Affiliations
Sung-Shik Yoo, Univ. of Illinois/Chicago (United States)
Brian G. Rodricks, Argonne National Lab. (United States)
Sivalingam Sivananthan, Univ. of Illinois/Chicago (United States)
Jean-Pierre Faurie, Univ. of Illinois/Chicago (United States)
Pedro A. Montano, Univ. of Illinois/Chicago and Argonne National Lab. (United States)

Published in SPIE Proceedings Vol. 2228:
Producibility of II-VI Materials and Devices
Herbert K. Pollehn; Raymond S. Balcerak, Editor(s)

© SPIE. Terms of Use
Back to Top