Share Email Print

Proceedings Paper

Texture-based segmentation using Markov random field models
Author(s): Chi-hsin Wu; Peter C. Doerschuk
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We describe segmentation based on textures using the label and image model of D. Geman et al. We replace their maximum a posteriori estimation criteria with a Bayesian estimator that minimizes the sum of the pixel misclassification probabilities. The new estimation goal allows the use of a different computational algorithm based on approximating lattices by trees. An example demonstrating an accurate segmentation of a collage of Brodatz textures is included.

Paper Details

Date Published: 30 June 1994
PDF: 8 pages
Proc. SPIE 2304, Neural and Stochastic Methods in Image and Signal Processing III, (30 June 1994); doi: 10.1117/12.179216
Show Author Affiliations
Chi-hsin Wu, Purdue Univ (United States)
Peter C. Doerschuk, Purdue Univ. (United States)

Published in SPIE Proceedings Vol. 2304:
Neural and Stochastic Methods in Image and Signal Processing III
Su-Shing Chen, Editor(s)

© SPIE. Terms of Use
Back to Top