Share Email Print
cover

Proceedings Paper

Optical and electro-optical architectures for the compression and encryption of discrete signals and imagery: 2. Data encryption
Author(s): Mark S. Schmalz
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this second of a series of papers, we present optical architectures for the encryption of signals or imagery that are defined over discrete domains. As in Part 1, we emphasize the mapping of candidate algorithms and describe encryption transforms in terms of image algebra (IA) expressions, as well as notation specific to this study. both of which were reviewed in Part 1. The feasibility of our algorithms is verified by presenting schematic optical architectures that implement the corresponding IA expressions, together with pertinent analyses. In particular, we discuss the optical implementation of data encryption via mono- and polyalphabetic substitutions, transpositional and polygraphic ciphers, vector quantization, and DES (data encryption standard). Analyses and discussion emphasize computation cost inclusive of propagation time, as well as the information loss expected from physical devices such as spatial light modulators and beam deflectors.

Paper Details

Date Published: 1 June 1994
PDF: 11 pages
Proc. SPIE 2238, Hybrid Image and Signal Processing IV, (1 June 1994); doi: 10.1117/12.177726
Show Author Affiliations
Mark S. Schmalz, Univ. of Florida (United States)


Published in SPIE Proceedings Vol. 2238:
Hybrid Image and Signal Processing IV
David P. Casasent; Andrew G. Tescher, Editor(s)

© SPIE. Terms of Use
Back to Top