Share Email Print
cover

Proceedings Paper

Mobile SO2 and NO2 DIAL Lidar system for enforcement use
Author(s): David Lloyd Cunningham; William H. Pence; Stephen E. Moody
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A self-contained mobile differential absorption lidar (DIAL) system intended for measuring SO2 and NO2 concentrations from stationary combustion sources has been completed for enforcement use. The system uses tunable Ti:sapphire laser technology, with nonlinear conversion to the blue and UV absorption wavelengths. Separate tunable laser oscillators at slightly offset wavelengths are pumped on alternate pulses of a 20 Hz doubled Nd:YAG pump laser; the outputs are amplified in a common amplifier, doubled or tripled, and transmitted toward a target region via a two-mirror beam director. Scattered atmospheric returns are collected in a 0.27-m-diameter telescope, detected with a filtered photomultiplier, and digitized and stored for analysis. Extensive software-based control and display windows are provided for operator interaction with the system. The DIAL system is built into a small motor coach. Gasoline- powered electrical generation, laser cooling, and air conditioning services are present. Separate computers are provided for simultaneous data collection and data analysis activities, with shared data base access. A laser printer supplies hardcopy output. The system includes the capability for automatic data collection at a series of scanner angles, and computer processing to present results in a variety of formats. Plumes from coal-fired and mixed-fuel-fired combusters have been examined for NO2 and SO2 content. Noise levels of a few parts per million are reached with averaging times of less than one minute.

Paper Details

Date Published: 3 June 1994
PDF: 10 pages
Proc. SPIE 2112, Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, (3 June 1994); doi: 10.1117/12.177304
Show Author Affiliations
David Lloyd Cunningham, Orca Photonic Systems, Inc. (United States)
William H. Pence, Orca Photonic Systems, Inc. (United States)
Stephen E. Moody, Orca Photonic Systems, Inc. (United States)


Published in SPIE Proceedings Vol. 2112:
Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements
Alan Fried; Dennis K. Killinger; Harold I. Schiff, Editor(s)

© SPIE. Terms of Use
Back to Top