Share Email Print
cover

Proceedings Paper

Single epitaxial structure for the integration of lasers with heterojunction bipolar transistors
Author(s): Anish K. Goyal; Mark S. Miller; Stephen I. Long; Devin Leonard
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Heterojunction bipolar transistors (HBTs) are capable of producing very high speed digital integrated circuits operating as high as 40 GHz. In this paper we introduce a potentially low cost technique of monolithically integrating in-plane lasers with HBT circuits. A multifunctional epitaxial structure is used which is essentially the same as that for a standard high-speed HBT with modifications made to allow for efficient light amplification. Unlike previous multifunctional epitaxial structures, compromise in the transistor's performance is minimal. The schematic energy band diagrams of the HBT/laser structure biased as an HBT and laser are depicted. Light amplification is achieved by forward biasing the HBT's base- collector junction. The optical gain media is placed in the GaAs collector and consists of strained InGaAs quantum wells (QWs). Under normal HBT operation, the base-collector junction is reverse biased and serves as a sink for electrons which have diffused across the base. To confine electronic carries to the gain region when this junction is forward biased, the subcollector and base consist of a wider bandgap AlGaAs relative to the GaAs collector.

Paper Details

Date Published: 1 June 1994
PDF: 8 pages
Proc. SPIE 2148, Laser Diode Technology and Applications VI, (1 June 1994); doi: 10.1117/12.176645
Show Author Affiliations
Anish K. Goyal, Univ. of California/Santa Barbara (United States)
Mark S. Miller, Univ. of California/Santa Barbara (Sweden)
Stephen I. Long, Univ. of California/Santa Barbara (United States)
Devin Leonard, Univ. of California/Santa Barbara (United States)


Published in SPIE Proceedings Vol. 2148:
Laser Diode Technology and Applications VI
Pei Chuang Chen; Lawrence A. Johnson; Henryk Temkin, Editor(s)

© SPIE. Terms of Use
Back to Top