Share Email Print

Proceedings Paper

Investigation of proximity effects for a rim phase-shifting mask printed with annular illumination
Author(s): David M. Newmark; Eric Tomacruz; Sheila Vaidya; Andrew R. Neureuther
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Resolution enhancement techniques have been explored extensively in the last few years in attempts to reliably extend optical lithography to smaller features. Off-axis illumination has shown remarkable success improving the depth of focus for dense lines and spaces. However, the depth of focus for isolated lines is degraded. This paper shows experimental results of 0.22 micrometers lines at varying pitch printed with a rim phase-shifting mask on a GCA DUV stepper with 0.53 NA and annular illumination of 0.6 - 0.7 (sigma) . Although the results demonstrate a depth of focus of greater than 1.0 micrometers , there are severe proximity effects which cause a 60 nm difference between the dimension of dense versus isolated lines. We hypothesize that this proximity effect is caused by three physical phenomena, the aerial image itself, reflections from the silicon substrate, and acid diffusion in the APEX-E (IBM) resist. Simulation results are presented which show that of the 60 nm linewidth difference, 10 nm is due to the image, 10 nm is caused by substrate reflections, and 40 nm is the result of acid diffusion in the resist.

Paper Details

Date Published: 17 May 1994
PDF: 11 pages
Proc. SPIE 2197, Optical/Laser Microlithography VII, (17 May 1994); doi: 10.1117/12.175428
Show Author Affiliations
David M. Newmark, Univ. of California/Berkeley (United States)
Eric Tomacruz, Univ. of California/Berkeley (United States)
Sheila Vaidya, AT&T Bell Labs. (United States)
Andrew R. Neureuther, Univ. of California/Berkeley (United States)

Published in SPIE Proceedings Vol. 2197:
Optical/Laser Microlithography VII
Timothy A. Brunner, Editor(s)

© SPIE. Terms of Use
Back to Top