Share Email Print

Proceedings Paper

Chemical analysis of electron beam curing of positive photoresist
Author(s): Matthew F. Ross; Lorna D.H. Christensen; John Magvas
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper the chemical and thermal properties of electron beam cured photoresist were investigated and compared with conventional thermal curing methods. The photoresist used in this investigation was AZ P.4620, a positive novolak based photoresist formulated for thick film applications. The films were exposed with varying dosages using an electron beam photoresist curing system. The photoresist films were then analyzed for residual solvent content, photoactive compound decomposition, percentage of crosslinking, and film shrinkage as a function of exposure dose. These properties were then compared with the properties of resist films cured using conventional thermal curing methods. A model of photoresist curing chemistry as a function of dose is proposed as well as a method for optimizing the cure of the photoresist for different applications.

Paper Details

Date Published: 16 May 1994
PDF: 15 pages
Proc. SPIE 2195, Advances in Resist Technology and Processing XI, (16 May 1994); doi: 10.1117/12.175396
Show Author Affiliations
Matthew F. Ross, Electron Vision Corp. (United States)
Lorna D.H. Christensen, Hoechst Celanese Corp. (United States)
John Magvas, Hoechst Celanese Corp. (United States)

Published in SPIE Proceedings Vol. 2195:
Advances in Resist Technology and Processing XI
Omkaram Nalamasu, Editor(s)

© SPIE. Terms of Use
Back to Top