Share Email Print
cover

Proceedings Paper

Load limiting parachute inflation control
Author(s): James M. Redmond; Terry D. Hinnerichs; Gordon G. Parker
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Excessive deceleration forces experienced during high speed deployment of parachute systems can cause damage to the payload and the canopy fabric. Conventional reefing lines offer limited relief by temporarily restricting canopy inflation and limiting the peak deceleration load. However, the open-loop control provided by existing reefing devices restrict their use to a specific set of deployment conditions. In this paper, the sensing, processing, and actuation that are characteristic of adaptive structures form the basis of three concepts for active control of parachute inflation. These active control concepts are incorporated into a computer simulation of parachute inflation. Initial investigations indicate that these concepts promise enhanced performance as compared to conventional techniques for a nominal release. Furthermore, the ability of each controller to adapt to off-nominal release conditions is examined.

Paper Details

Date Published: 6 May 1994
PDF: 11 pages
Proc. SPIE 2190, Smart Structures and Materials 1994: Smart Structures and Intelligent Systems, (6 May 1994); doi: 10.1117/12.175230
Show Author Affiliations
James M. Redmond, Sandia National Labs. (United States)
Terry D. Hinnerichs, Sandia National Labs. (United States)
Gordon G. Parker, Sandia National Labs. (United States)


Published in SPIE Proceedings Vol. 2190:
Smart Structures and Materials 1994: Smart Structures and Intelligent Systems
Nesbitt W. Hagood, Editor(s)

© SPIE. Terms of Use
Back to Top