Share Email Print
cover

Proceedings Paper

Microscopical high-speed investigations of vacuum-arc cathode spots
Author(s): Peter Siemroth; Thomas Schuelke; Thomas Witke
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The main parameters and dimensions of cathode spots were under discussion for years. To solve these current questions, a new system was especially designs. The image converting High Speed Framing Camera, which combines a microscopical resolution of 5 micrometers with a nanosecond time resolution and a very high optical sensitivity. This camera was used to study the microscopical behavior of vacuum arc cathode spots in a pulsed high current arc discharge on copper. The direct observation of these spots with high resolution revealed the conclusions that one single cathode spot, as normally observed by optical means consists of a number of simultaneously existing microscopical sub-spots, each of them with a diameter of about 15 micrometers and a mean distance of 30...50 micrometers between them. The mean existence time of these sub-spots on copper was found to be about 3.2 microsecond(s) , where the position of a sub-spot remains unchanged (with an upper limit of about 2...3 micrometers ) during its existence time. An upper limit of the crater surface temperature was estimated by a comparison between the brightness of a cathode spot and of a black body radiation lamp to about 3000 K.

Paper Details

Date Published: 1 May 1994
PDF: 4 pages
Proc. SPIE 2259, XVI International Symposium on Discharges and Electrical Insulation in Vacuum, (1 May 1994); doi: 10.1117/12.174639
Show Author Affiliations
Peter Siemroth, Fraunhofer Institute for Materials Physics and Surface Engineering (Germany)
Thomas Schuelke, Fraunhofer Institute for Materials Physics and Surface Engineering (Germany)
Thomas Witke, Fraunhofer Institute for Materials Physics and Surface Engineering (Germany)


Published in SPIE Proceedings Vol. 2259:
XVI International Symposium on Discharges and Electrical Insulation in Vacuum
Gennady A. Mesyats, Editor(s)

© SPIE. Terms of Use
Back to Top