Share Email Print

Proceedings Paper

Knowledge learning on fuzzy expert neural networks
Author(s): Hsin-Chia Fu; J.-J. Shann; Hsiao-Tien Pao
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The proposed fuzzy expert network is an event-driven, acyclic neural network designed for knowledge learning on a fuzzy expert system. Initially, the network is constructed according to a primitive (rough) expert rules including the input and output linguistic variables and values of the system. For each inference rule, it corresponds to an inference network, which contains five types of nodes: Input, Membership-Function, AND, OR, and Defuzzification Nodes. We propose a two-phase learning procedure for the inference network. The first phase is the competitive backpropagation (CBP) training phase, and the second phase is the rule- pruning phase. The CBP learning algorithm in the training phase enables the network to learn the fuzzy rules as precisely as backpropagation-type learning algorithms and yet as quickly as competitive-type learning algorithms. After the CBP training, the rule-pruning process is performed to delete redundant weight connections for simple network structures and yet compatible retrieving performance.

Paper Details

Date Published: 2 March 1994
PDF: 12 pages
Proc. SPIE 2243, Applications of Artificial Neural Networks V, (2 March 1994); doi: 10.1117/12.169962
Show Author Affiliations
Hsin-Chia Fu, National Chiao Tung Univ. (Taiwan)
J.-J. Shann, National Chiao Tung Univ. (Taiwan)
Hsiao-Tien Pao, National Chiao Tung Univ. (Taiwan)

Published in SPIE Proceedings Vol. 2243:
Applications of Artificial Neural Networks V
Steven K. Rogers; Dennis W. Ruck, Editor(s)

© SPIE. Terms of Use
Back to Top