Share Email Print

Proceedings Paper

Multivariate calibration applied to near-infrared spectroscopy for the quantitative analysis of dilute aqueous solutions
Author(s): David M. Haaland; Howland D. T. Jones
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The penetration depths possible with near-infrared spectroscopy make it well suited for reagentless monitoring of analytes in body fluids or noninvasive monitoring of human tissue. As an initial step in achieving these goals, we have conducted near-infrared in-vitro experiments of dilute aqueous solutions containing analytes of physiological importance. By combining partial least squares (PLS) multivariate calibration methods with Latin Hypercube statistical designs, we have obtained precise near-infrared spectral determinations of urea, creatinine, and NaCl in dilute aqueous solutions. Cross-validated PLS calibrations for the three analytes and temperature were very precise and resulted in R2 values greater than 0.997.

Paper Details

Date Published: 31 January 1994
PDF: 2 pages
Proc. SPIE 2089, 9th International Conference on Fourier Transform Spectroscopy, (31 January 1994); doi: 10.1117/12.166659
Show Author Affiliations
David M. Haaland, Sandia National Labs. (United States)
Howland D. T. Jones, Sandia National Labs. (United States)

Published in SPIE Proceedings Vol. 2089:
9th International Conference on Fourier Transform Spectroscopy
John E. Bertie; Hal Wieser, Editor(s)

© SPIE. Terms of Use
Back to Top