Share Email Print
cover

Proceedings Paper

Optimization of SiO2-TiNxOy-Cu interference absorbers: numerical and experimental results
Author(s): Michel P. Lazarov; R. Sizmann; Ulrich Frei
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

SiO2 - TiNxOy-Cu absorbers were prepared with activated reactive evaporation (ARE). The deposition parameters for the ARE process were adjusted according to the results of the numerical optimizations by a genetic algorithm. We present spectral reflectance, calorimetric and grazing incidence X-ray reflection (GXR) measurements. Best coatings for applications as selective absorber in the range of T equals 100 (DOT)(DOT)(DOT) 200 degree(s)C exhibit a solar absorptance of 0.94 and a near normal emittance of 0.044 at 100 degree(s)C. This emittance is correlated with the hemispherical emittance of 0.061 obtained from calorimetric measurements at 200 degree(s)C. First results on lifetime studies show that the coatings are thermally stable under vacuum up to 400 degree(s)C. The SiO2 film passivates the absorber, a substantial slow down of degradation in dry air is observed. Our tests demonstrate that the coating will withstand break down in cooling fluid and vacuum if mounted in an evacuated collector.

Paper Details

Date Published: 22 October 1993
PDF: 12 pages
Proc. SPIE 2017, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XII, (22 October 1993); doi: 10.1117/12.161975
Show Author Affiliations
Michel P. Lazarov, Ludwig-Maximilians-Univ. Muenchen (Germany)
R. Sizmann, Ludwig-Maximilians-Univ. Muenchen (Germany)
Ulrich Frei, Solarenergie Pruf- und Forchungsstelle Technikum Rapperswil (Switzerland)


Published in SPIE Proceedings Vol. 2017:
Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XII
Carl M. Lampert, Editor(s)

© SPIE. Terms of Use
Back to Top