Share Email Print

Proceedings Paper

Neural network clutter-rejection model for FLIR ATR
Author(s): Andrew P. Kramer; Ajay Jain
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Boundary shape is a significant and well-modeled property of forward-looking infrared (FLIR) sensor target signatures. State-of-the-art FLIR automatic target recognition (ATR) algorithms that rely on signature shape for target detection perform well but still fall short of human performance and many DoD requirements. We find that internal signature information significantly improves detection performance. The problem is that this information is not easily modeled, especially in FLIR signatures, because the signatures exhibit significant variations dependent on a large number of unknowns. We have developed a model-driven neural network technique, called Programmed Constructive Neural Networks (PCNN), that demonstrates superior performance and generalization compared to traditional back- propagation techniques in high noise applications. We have used the PCNN technique to model internal FLIR signature information for clutter rejection. Our PCNN FLIR clutter rejection model eliminates 75% of the false alarms in a state-of-the-art shape-based algorithm with minimal detection loss. This result was achieved even on scenarios not represented in the training set.

Paper Details

Date Published: 20 October 1993
PDF: 7 pages
Proc. SPIE 1957, Architecture, Hardware, and Forward-Looking Infrared Issues in Automatic Target Recognition, (20 October 1993); doi: 10.1117/12.161457
Show Author Affiliations
Andrew P. Kramer, Alliant Techsystems, Inc. (United States)
Ajay Jain, Alliant Techsystems, Inc. (United States)

Published in SPIE Proceedings Vol. 1957:
Architecture, Hardware, and Forward-Looking Infrared Issues in Automatic Target Recognition
Lynn E. Garn; Lynda Ledford Graceffo, Editor(s)

© SPIE. Terms of Use
Back to Top