Share Email Print

Proceedings Paper

Heterogeneous computer architecture for embedded real-time image interpretation
Author(s): Jeremy A. Salinger
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A heterogeneous parallel-processing computer architecture is being developed for embedded real-time interpretation of images and other data collected from sensors on mobile platforms. The Advanced Target Cueing and Recognition Engine (ATCURE) architecture includes specialized subsystems for input/output, image processing, numeric processing, and symbolic processing. Different specialization is provided for each subsystem to exploit distinctive demands for data storage, data representation, mixes of operations, and program control structures. The characteristics of each subsystem are described, with the Image Processing Subsystem (IPS) used to illustrate how the design is driven by careful analysis of current and projected computational requirements from many applications. These considerations led to a programming model for the Image Processing Subsystem in which images and their subsets are the fundamental unit of data. The processor implementation incorporates a scalable synchronous pipeline of processing elements that eliminates many of the bottlenecks found in MIMD and SIMD architectures.

Paper Details

Date Published: 20 October 1993
PDF: 9 pages
Proc. SPIE 1957, Architecture, Hardware, and Forward-Looking Infrared Issues in Automatic Target Recognition, (20 October 1993); doi: 10.1117/12.161439
Show Author Affiliations
Jeremy A. Salinger, Enviromental Research Institute of Michigan (United States)

Published in SPIE Proceedings Vol. 1957:
Architecture, Hardware, and Forward-Looking Infrared Issues in Automatic Target Recognition
Lynn E. Garn; Lynda Ledford Graceffo, Editor(s)

© SPIE. Terms of Use
Back to Top