Share Email Print

Proceedings Paper

Pipelined adaptive DFE architectures
Author(s): Naresh R. Shanbhag; Keshab K. Parhi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Fine-grain pipelined adaptive decision-feedback equalizer (ADFE) architectures are developed using the relaxed look-ahead technique. This technique, which is an approximation to the conventional look-ahead computation, maintains functionality of the algorithm rather than the input-output behavior. Thus, it results in substantial hardware savings as compared to either parallel processing or look-ahead techniques. The delay relaxation, delay transfer relaxation, and sum relaxation are introduced for purposes of pipelining. Both the conventional and the predictor form of ADFE have been pipelined. The performance of the pipelined algorithms for the equalization of a magnetic recording channel is studied. It is demonstrated via simulations that, for a byte error rate of 10-7 or less, speed-ups of up to 8 can be easily achieved with the conventional ADFE. The predictor form of ADFE allows much higher speed-ups (up to 32) for less than 1 dB of SNR degradation.

Paper Details

Date Published: 1 November 1993
PDF: 12 pages
Proc. SPIE 2027, Advanced Signal Processing Algorithms, Architectures, and Implementations IV, (1 November 1993); doi: 10.1117/12.160429
Show Author Affiliations
Naresh R. Shanbhag, Univ. of Minnesota/Twin Cities (United States)
Keshab K. Parhi, Univ. of Minnesota/Twin Cities (United States)

Published in SPIE Proceedings Vol. 2027:
Advanced Signal Processing Algorithms, Architectures, and Implementations IV
Franklin T. Luk, Editor(s)

© SPIE. Terms of Use
Back to Top