Share Email Print

Proceedings Paper

Wavelet transform coding using NIVQ
Author(s): Xiping Wang; Sethuraman Panchanathan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Discrete wavelet transform is an ideal tool for multi-resolution representation of image signals. Some promising results have been recently reported on the application of wavelet transform for image compression. In this paper, we propose a new wavelet coding technique for image compression. The proposed scheme has the advantages of improved coding performance and reduced computational complexity. The input image is first decomposed into a pyramid structure with three layers using a 2-D wavelet transform. A block size of 2m - 3 (m equals 1, 2, 3) is used for each orientation sub-image at the m-th layer to form 64-D vectors by combining the corresponding blocks in all the sub-images. The 64-D vectors are then encoded using 16-D non-linear interpolative vector quantization (NIVQ). At the decoder, the indices are used to reconstruct the 64-D vectors directly from a 64-D codebook designed using a non-linear interpolative technique. The proposed scheme not only exploits the correlation among the wavelet sub-images but also preserves the high frequency sub-images. Simulation results show that the reconstructed image of a superior quality can be obtained at a compression ratio of about 100:1.

Paper Details

Date Published: 22 October 1993
PDF: 11 pages
Proc. SPIE 2094, Visual Communications and Image Processing '93, (22 October 1993); doi: 10.1117/12.157856
Show Author Affiliations
Xiping Wang, Univ. of Ottawa (Canada)
Sethuraman Panchanathan, Univ. of Ottawa (Canada)

Published in SPIE Proceedings Vol. 2094:
Visual Communications and Image Processing '93
Barry G. Haskell; Hsueh-Ming Hang, Editor(s)

© SPIE. Terms of Use
Back to Top