Share Email Print
cover

Proceedings Paper

Multiwavelength, wideband, intensity-modulated optical spectrometer for near-infrared spectroscopy and imaging
Author(s): Arlene Duncan; T. L. Whitlock; Mark Cope; David T. Delpy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Quantitative determination of chromophore concentrations by near infrared spectroscopy (NIRS) is possible by using the differential pathlength of the detected light, measured noninvasively as the mean time delay of the impulse response function of the tissue. Experimentally this information in the time domain is also available in the frequency domain by intensity modulating the input light and sweeping the modulation frequency between zero and infinity. We describe an intensity modulated optical spectrometer which differs from previously described systems in using four different wavelengths, a wideband modulation frequency (1 MHz to 500 MHz), and the simultaneous measurement of three parameters the dc intensity, ac amplitude, and the phase shift. The measured dc intensity in conjunction with the ac phase shift data allows changes in absorption coefficient (and hence chromophore concentration) to be determined more accurately by correcting for real time path length variations. The ac phase shift in combination with the ac modulation depth theoretically allows for the absolute measurement of tissue absorption and scattering coefficient. Preliminary performance figures for the system suggest values of rms noise of 0.0006 OD, 0.0011 rad and 0.0008% for the measured attenuation, ac phase shift and modulation depth. Using a phantom of fixed geometry with known scattering and absorption properties, the ability of the system to reproduce the information content of the impulse response function for a homogeneous phantom is investigated.

Paper Details

Date Published: 14 September 1993
PDF: 10 pages
Proc. SPIE 1888, Photon Migration and Imaging in Random Media and Tissues, (14 September 1993); doi: 10.1117/12.154641
Show Author Affiliations
Arlene Duncan, Univ. College London (United Kingdom)
T. L. Whitlock, Univ. College London (United Kingdom)
Mark Cope, Univ. College London (United Kingdom)
David T. Delpy, Univ. College London (United Kingdom)


Published in SPIE Proceedings Vol. 1888:
Photon Migration and Imaging in Random Media and Tissues
Britton Chance; Robert R. Alfano, Editor(s)

© SPIE. Terms of Use
Back to Top