Share Email Print
cover

Proceedings Paper

Application of design optimization techniques for vibration control of structures using piezoelectric devices
Author(s): Aditi Chattopadhyay; Charles E. Seeley
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Active vibration control of structures using piezoelectric materials is a new approach for damping unwanted vibrations in structures lacking sufficient stiffness or passive damping. The finite elements method is used to model active damping elements which are piezoelectric actuators bonded to a box beam. Efficient implementation of these actuators requires that their optimal locations on the structure be determined and that the structure be designed to best utilize the properties of the piezoelectrics. A formal optimization procedure has been developed to address both of these issues. Multiobjective optimization techniques are used to minimize multiple and conflicting design objectives such as mass and energy dissipated by the piezoelectric actuators.

Paper Details

Date Published: 8 September 1993
PDF: 12 pages
Proc. SPIE 1917, Smart Structures and Materials 1993: Smart Structures and Intelligent Systems, (8 September 1993); doi: 10.1117/12.152806
Show Author Affiliations
Aditi Chattopadhyay, Arizona State Univ. (United States)
Charles E. Seeley, Arizona State Univ. (United States)


Published in SPIE Proceedings Vol. 1917:
Smart Structures and Materials 1993: Smart Structures and Intelligent Systems
Nesbitt W. Hagood; Gareth J. Knowles, Editor(s)

© SPIE. Terms of Use
Back to Top