Share Email Print
cover

Proceedings Paper

Control of broadband radiated sound with adaptive structures
Author(s): J. P. Smith; Chris R. Fuller; Ricardo A. Burdisso
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Active structural acoustic control using adaptive structures has been demonstrated for harmonic disturbances. This paper presents an extension of this work to the attenuation of acoustic radiation from structures subject to broadband disturbances. An adaptive, multi-input multi-output (MIMO), feedforward broadband acoustic control system has been developed based on the least mean squares (LMS) algorithm. The compensators are adaptive finite impulse response (FIR) filters. The control inputs are implemented with piezoelectric ceramic actuators. Both far-field microphones and polyvinylidene fluoride (PVDF) structural sensors designed to observe the efficient acoustic radiating modes are used as error sensors. The disturbance is band-limited zero mean white noise and is implemented with a point force shaker. In the control of harmonically excited systems, satisfactory attenuation is possible with a single-input single-output (SISO) controller. In contrast, for systems excited with broadband disturbances, a MIMO controller is necessary for significant acoustic attenuation. Experimental results for the control of a simply supported plate are presented.

Paper Details

Date Published: 8 September 1993
PDF: 11 pages
Proc. SPIE 1917, Smart Structures and Materials 1993: Smart Structures and Intelligent Systems, (8 September 1993); doi: 10.1117/12.152793
Show Author Affiliations
J. P. Smith, Virginia Polytechnic Institute and State Univ. (United States)
Chris R. Fuller, Virginia Polytechnic Institute and State Univ. (United States)
Ricardo A. Burdisso, Virginia Polytechnic Institute and State Univ. (United States)


Published in SPIE Proceedings Vol. 1917:
Smart Structures and Materials 1993: Smart Structures and Intelligent Systems
Nesbitt W. Hagood; Gareth J. Knowles, Editor(s)

© SPIE. Terms of Use
Back to Top