Share Email Print

Proceedings Paper

MIT Middeck Active Control Experiment (MACE): noncollocated payload pointing control
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The Middeck Active Control Experiment is a space shuttle flight experiment intended to demonstrate high authority active structural control in zero gravity conditions. The prediction of on-orbit closed-loop dynamics is based on analysis and ground testing. The MACE test article is representative of multiple payload platforms, and includes two 2-axis gimballing payloads connected by a flexible bus. The goal of active control is to maintain pointing accuracy of one payload, while the remaining payload is moving independently. Current control results on the ground test article are presented. Multiple input, multiple output controllers are designed based on high order measurement based models. Linear Quadratic Gaussian controllers yield reasonable performance. At high authority, however, these controllers destabilize the actual structure, due to parametric errors in the control design model. A robust control design procedure is required to yield high performance in the presence of these errors.

Paper Details

Date Published: 8 September 1993
PDF: 12 pages
Proc. SPIE 1917, Smart Structures and Materials 1993: Smart Structures and Intelligent Systems, (8 September 1993); doi: 10.1117/12.152788
Show Author Affiliations
Douglas G. MacMartin, Massachusetts Institute of Technology (United States)
David W. Miller, Massachusetts Institute of Technology (United States)

Published in SPIE Proceedings Vol. 1917:
Smart Structures and Materials 1993: Smart Structures and Intelligent Systems
Nesbitt W. Hagood; Gareth J. Knowles, Editor(s)

© SPIE. Terms of Use
Back to Top