Share Email Print
cover

Proceedings Paper

Methods for user-based reduction of model complexity for virtual planetary exploration
Author(s): Lewis E. Hitchner; Michael W. McGreevy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The NASA Ames Virtual Planetary Exploration (VPE) Testbed is developing methods for visualizing large planetary terrains in an interactive, immersive virtual environment system using a head-mounted display. Our data is the surface of Mars, modeled with a polygon mesh that typically contains 105 or more polygons. The goal of our work is to present terrain views with both high detail and frame update rates of 10 Hz or greater. We do this with extended level of detail (LOD) management. In VPE we include three LOD criteria: (1) distance from the viewpoint, (2) distance from the center of field of view, and (3) a metric based upon user-defined regions of interest. Motivations for these are: (1) all objects, independent of position, only need be displayed at a minimum visually perceptible resolution, (2) interest is focussed on the center of the field in a head-directed display, and (3) a feature's level of detail should relate to its importance to the application task. Our method uses analysis functions for each criterion that compute normalized scale factors. Factors are combined with user specified weights. At every frame update each region of the scene is analyzed, and its resulting scale factor determines which model to render. Parameters for each criterion may be interactively set by the user or automatically set by system to meet performance criteria (e.g., frame update rate).

Paper Details

Date Published: 8 September 1993
PDF: 15 pages
Proc. SPIE 1913, Human Vision, Visual Processing, and Digital Display IV, (8 September 1993); doi: 10.1117/12.152736
Show Author Affiliations
Lewis E. Hitchner, NASA Ames Research Ctr. (United States)
Michael W. McGreevy, NASA Ames Research Ctr. (United States)


Published in SPIE Proceedings Vol. 1913:
Human Vision, Visual Processing, and Digital Display IV
Jan P. Allebach; Bernice E. Rogowitz, Editor(s)

© SPIE. Terms of Use
Back to Top