Share Email Print
cover

Proceedings Paper

Improved detection model for DCT coefficient quantization
Author(s): Heidi A. Peterson; Albert J. Ahumada; Andrew B. Watson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A detection model is developed to predict visibility thresholds for discrete cosine transform coefficient quantization error, based on the luminance and chrominance of the error. The model is an extension of a previously proposed luminance-based model, and is based on new experimental data. In addition to the luminance-only predictions of the previous model, the new model predicts the detectability of quantization error in color space directions in which chrominance error plays a major role. This more complete model allows DCT coefficient quantization matrices to be designed for display conditions other than those of the experimental measurements: other display luminances, other veiling luminances, other spatial frequencies (different pixel sizes, viewing distances, and aspect ratios), and other color directions.

Paper Details

Date Published: 8 September 1993
PDF: 11 pages
Proc. SPIE 1913, Human Vision, Visual Processing, and Digital Display IV, (8 September 1993); doi: 10.1117/12.152693
Show Author Affiliations
Heidi A. Peterson, IBM Thomas J. Watson Research Ctr. (United States)
Albert J. Ahumada, NASA Ames Research Ctr. (United States)
Andrew B. Watson, NASA Ames Research Ctr. (United States)


Published in SPIE Proceedings Vol. 1913:
Human Vision, Visual Processing, and Digital Display IV
Jan P. Allebach; Bernice E. Rogowitz, Editor(s)

© SPIE. Terms of Use
Back to Top