Share Email Print
cover

Proceedings Paper

Parameter estimation of a network with kernal functions of bounds and locality
Author(s): Rhee Man Kil
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper presents function approximation based on nonparametric estimation. As an estimation model of function approximation, a three layered network composed of input, hidden and output layers is considered. The input and output layers have linear activation units while the hidden layer has nonlinear activation units or kernel functions which have the characteristics of bounds and locality. Using this type of network, a many-to-one function is synthesized over the domain of the input space by a number of kernel functions. In this network, we have to estimate the necessary number of kernel functions as well as the parameters associated with kernel functions. For this purpose, a new method of parameter estimation in which linear learning rule is applied between hidden and output layers while nonlinear (piecewise-linear) learning rule is applied between input and hidden layers, is considered. The linear learning rule updates the output weights between hidden and output layers based on the Linear Minimization of Mean Square Error (LMMSE) sense in the space of kernel functions while the nonlinear learning rule updates the parameters of kernel functions based on the gradient of mean square error with respect to the parameters (especially, the shape) of kernel functions. This approach of parameter adaptation provides near optimal values of the parameters associated with kernel functions in the sense of minimizing mean square error. As a result, the suggested nonparametric estimation provides an efficient way of function approximation from the view point of the number of kernel functions as well as learning speed.

Paper Details

Date Published: 19 August 1993
PDF: 12 pages
Proc. SPIE 1966, Science of Artificial Neural Networks II, (19 August 1993); doi: 10.1117/12.152628
Show Author Affiliations
Rhee Man Kil, Electronics and Telecommunications Research Institute (South Korea)


Published in SPIE Proceedings Vol. 1966:
Science of Artificial Neural Networks II
Dennis W. Ruck, Editor(s)

© SPIE. Terms of Use
Back to Top