Share Email Print
cover

Proceedings Paper

Infrared ship/decoy/missile encounter model
Author(s): Josee Morin; Francoise Reid; Andre Morin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Simulations of missile-ship-countermeasures engagements are used to determine the effective ways of defending a ship against infrared-guided missile threats. This paper describes one type of simulation that models the engagement of a ship deploying IR decoys by an infrared-guided seeker-head missile. This model was developed to assess the efficiency of IR decoys in protecting ships against these missiles. The simulation, Missile Infrared Decoy And Ship (MIDAS), is composed of three major blocks, the infrared scene generation, the seeker simulation and the missile dynamics simulation. The infrared scene generation block produces a three-dimensional IR scene from the target ship and flare models and transforms it into the two-dimensional IR image viewed by the seeker. The seeker simulation block is based on a generic conical scan seeker which uses a crossed-detector array for target detection. It processes the IR image to select a target and generates a steering command. The missile dynamics block computes the changes in missile trajectory according to the seeker steering command. The computations performed by each of the three blocks are explained in detail.

Paper Details

Date Published: 13 August 1993
PDF: 11 pages
Proc. SPIE 1967, Characterization, Propagation, and Simulation of Sources and Backgrounds III, (13 August 1993); doi: 10.1117/12.151037
Show Author Affiliations
Josee Morin, Defence Research Establishment Valcartier (Canada)
Francoise Reid, Defence Research Establishment Valcartier (Canada)
Andre Morin, INO (Canada)


Published in SPIE Proceedings Vol. 1967:
Characterization, Propagation, and Simulation of Sources and Backgrounds III
Wendell R. Watkins; Dieter Clement, Editor(s)

© SPIE. Terms of Use
Back to Top