Share Email Print
cover

Proceedings Paper

Experiment and simulation of sub-0.25-um resist processes for 193-nm lithography
Author(s): Roderick R. Kunz; Mark A. Hartney; Richard W. Otten; Eytan Barouch; Uwe Hollerbach
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A model was developed to simulate the behavior of near-surface-imaged resist processes, with the emphasis on modeling of resist processes for 193 nm. Silylation, bilayer, and additive resist processes can all be simulated using this model. For the silylation process, the model was found to be in excellent agreement with experimentally observed silylated resist profiles. This model was used in combination with existing programs that calculate aerial images and single-layer resist profiles to predict process margins for 193 nm (0.5 NA) lithography. The results of our simulations for 0.25 micrometers features indicate a depth of focus comparable to the Rayleigh limit (+/- 0.4 micrometers ) for a single-layer resist process and up to two times this value for near-surface-imaged resists. Focus latitudes greater than the Rayleigh limit are predicted for 0.18 micrometers features when using near-surface-imaged resists in conjunction with annular illumination.

Paper Details

Date Published: 8 August 1993
PDF: 13 pages
Proc. SPIE 1927, Optical/Laser Microlithography, (8 August 1993); doi: 10.1117/12.150444
Show Author Affiliations
Roderick R. Kunz, Lincoln Lab./MIT (United States)
Mark A. Hartney, Lincoln Lab./MIT (United States)
Richard W. Otten, Lincoln Lab./MIT (United States)
Eytan Barouch, Princeton Univ. (United States)
Uwe Hollerbach, Princeton Univ. (United States)


Published in SPIE Proceedings Vol. 1927:
Optical/Laser Microlithography
John D. Cuthbert, Editor(s)

© SPIE. Terms of Use
Back to Top