Share Email Print
cover

Proceedings Paper

Gbps-class optical communications systems for free-space applications
Author(s): Jeffrey C. Livas; Stephen B. Alexander; Emily S. Kintzer; Eric A. Swanson; Thomas J. Paul
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

For very high data rates, optical communications holds a potential performance edge over other technologies, especially for space applications where size, weight, and power are of prime importance. We report demonstrations of several Gigabit-per-second (Gbps) class all- semiconductor optical communications systems which have been developed for free-space satellite crosslink applications. These systems are based on the master-oscillator-power- amplifier (MOPA) transmitter architecture which resolves the conflicting requirements of high speed and high power on a single-laser coherent transmitter. A 1 Gbps, 1 Watt system operating at 973 nm with a frequency-shift-keyed (FSK) modulation format is the highest power coherent optical communications system using all semiconductor lasers reported to date. A 3 Gbps differential-phase-shift-keyed (DPSK) system uses a 2-stage injection-locked diode array as a power amplifier at 830 nm. At a wavelength of 1.5 micrometers , an optically- preamplified direct-detection on-off-keyed (OOK) receiver was demonstrated at both 3 and 10 Gbps. A 3 Gbps optically-preamplified direct-detection DPSK receiver was also demonstrated and represents, to our knowledge, the highest sensitivity DPSK receiver reported to date for data rates above 2 Gbps.

Paper Details

Date Published: 6 August 1993
PDF: 10 pages
Proc. SPIE 1866, Free-Space Laser Communication Technologies V, (6 August 1993); doi: 10.1117/12.149231
Show Author Affiliations
Jeffrey C. Livas, Lincoln Lab./MIT (United States)
Stephen B. Alexander, Lincoln Lab./MIT (United States)
Emily S. Kintzer, Lincoln Lab./MIT (United States)
Eric A. Swanson, Lincoln Lab./MIT (United States)
Thomas J. Paul, Lincoln Lab./MIT (United States)


Published in SPIE Proceedings Vol. 1866:
Free-Space Laser Communication Technologies V
G. Stephen Mecherle, Editor(s)

© SPIE. Terms of Use
Back to Top