Share Email Print

Proceedings Paper

Application of image restoration and three-dimensional visualization techniques to frog microvessels in-situ loaded with fluorescent indicators
Author(s): Stamatis N. Pagakis; Fitz-Roy E. Curry; Joyce F. Lenz
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In situ experiments on microvessels require image sensors of wide dynamic range due to large variations of the intensity in the scene, and 3D visualization due to the thickness of the preparation. The images require restoration because of the inherent tissue movement, out-of- focus-light contamination, and blur. To resolve the above problems, we developed an imaging system for quantitative imaging based on a 12 bits/pixel cooled CCD camera and a PC based digital imaging system. We applied the optical sectioning technique with image restoration using a modified nearest neighbor algorithm and iterative constrained deconvolution on each of the 2D optical sections. For the 3D visualization of the data, a volume rendering software was used. The data provided 3D images of the distribution of fluorescent indicators in intact microvessels. Optical cross sections were also compared with cross sections of the same microvessels examined in the electron microscope after their luminal surfaces were labeled with a tracer which was both electron dense and fluorescent. This procedure enabled precise identification of the endothelial cells in the microvessel wall as the principal site of accumulation of the fluorescent calcium indicator, fura-2, during microperfusion experiments.

Paper Details

Date Published: 29 July 1993
PDF: 12 pages
Proc. SPIE 1905, Biomedical Image Processing and Biomedical Visualization, (29 July 1993); doi: 10.1117/12.148706
Show Author Affiliations
Stamatis N. Pagakis, Univ. of California/Davis (United States)
Fitz-Roy E. Curry, Univ. of California/Davis (United States)
Joyce F. Lenz, Univ. of California/Davis (United States)

Published in SPIE Proceedings Vol. 1905:
Biomedical Image Processing and Biomedical Visualization
Raj S. Acharya; Dmitry B. Goldgof, Editor(s)

© SPIE. Terms of Use
Back to Top